miércoles, 29 de abril de 2009
Es dulce el tormento
El tormento será duro, pero normalmente es como el limón: amargo en sí, aunque no deja de tener su toque de sabor. Dulce o amargo, no lo hago asco a ninguno de los sabores que la vida ofrece... si no fuera por la amargura, cuántas palabras no habría dicho, cuántas ideas no hubieran visto la luz. ¿Realmente merece la pena?... ¿Acaso tengo opción? Mi camino no está escrito, soy yo quien lo hace al caminar por los campos. Campos sembrados de rosales llenos de espinas, pero que igualmente guardan sus tesoros, corazones rojos llenos de historias que esperan ser.
Monteverdi, Dowland... ellos son mis maestros en el arte de saborear el tormento.
¿Es esta la mejor forma de vivir que he encontrado hasta ahora? ¿No buscar la felicidad constante, sino degustar el dulce y el amargo? ¿Rosas o espinas, rosas y espinas?
La duda es mi tormento... como siempre. !Cuándo podre por fin aprender a convivir con ella sin que me quite el sueño!!!! ¡¡¡¡¡Me siento culpable por no saber disfrutar de todas las pequeñas piedras, espinas y rosas que voy encontrando en el camino!!!!!
domingo, 19 de abril de 2009
Última fase: Las criticas
Una vez terminado el proyecto, llega la hora de las críticas. A mi entender han sido buenas, y considero el proyecto todo un éxito. Muchas gracias a todos los que vinisteis. Proximamente se editará un DVD con la conferencia, mi presentación y el concierto con la creación pictorica del pintor Ángel Haro; el cual no tendré problema en pasar a todo el que me lo pida.
Os dejo ahora una serie de enlaces de distintos periodicos donde apareció todo este tinglado:
http://www.larazon.es/noticia/el-parraga-estrena-el-proyecto-musica-y-sinestesia-de-francisco-andreo
http://www.elfaro.es/noticia.asp?ref=125126
http://www.centroparraga.es/prensaImagenes_item.php?z=C_IMG&id=58&li=0&finished=0
Toda una experiencia, un gustazo profesional que al unirse con la alegría de ver a los amigos y conocidos que fueron a verme y apoyarme, acabó desembocando en experiencia catársica, equivalente al final de una sinfonía del maestro, llevandome a un lugar donde las palabras no llegan. Y donde las palabras no alcanzan, llega la música.
Cuando todo acabó, solo pude pensar en uno de los finales más grandes que nunca se han escrito, el de la nº3 del maestro Gustav:
viernes, 17 de abril de 2009
Se me cayó el mito
Ay ay ay, la mitad de la filosofía que he aprendido tirada por los suelos, y con ella toda mi concepción de este mundo. No me dolió ni la mitad cuando me enteré que los reyes eran los padres. Aquiles... te ha costado siglos, pero al final alcanzaste a la tortuga:
Aquiles y la tortuga:
Aquiles, llamado "el de los pies ligeros" y el más hábil guerrero de los Aqueos, quien mató a Héctor, decide salir a competir en una carrera contra una tortuga. Ya que corre mucho más rápido que ella, y seguro de sus posibilidades, le da una gran ventaja inicial. Al darse la salida, Aquiles recorre en poco tiempo la distancia que los separaba inicialmente, pero al llegar allí descubre que la tortuga ya no está, sino que ha avanzado, más lentamente, un pequeño trecho. Sin desanimarse, sigue corriendo, pero al llegar de nuevo donde estaba la tortuga, ésta ha avanzado un poco más. De este modo, Aquiles no ganará la carrera, ya que la tortuga estará siempre por delante de él.
Réplica a la paradoja:
Actualmente, se conoce que Aquiles realmente alcanzará a la tortuga,[1] ya que, como demostró el matemático escocés James Gregory (1638-1675), una suma de infinitos términos puede tener un resultado finito. Los tiempos en los que Aquiles recorre la distancia que le separa del punto anterior en el que se encontraba la tortuga son cada vez más y más pequeños, y su suma da un resultado finito, que es el momento en que alcanzará a la tortuga.
Otra manera de plantearlo es que Aquiles puede fijar un punto de llegada que está metros delante de la tortuga en vez del punto en que ella se encuentra. Ahora, en vez de cantidades infinitas, tenemos dos cantidades finitas con las cuales se puede calcular un espacio finito de tiempo en el cual Aquiles pasará a la tortuga.
Otra forma de encarar el problema es huyendo del análisis infinitesimal, cuyo planteamiento matemático se desconocía en tal época, para reconvertirlo en análisis discreto: Filípides -el campeón olímpico al que se ordenó que abandonara las filas del ejército para comunicar a Atenas la victoria conseguida sobre los persas en la playa de Marathon- no recorre espacios infinitesimales, sino discretos, que podemos denominar zancada. A cada zancada le podemos asignar un espacio concreto. Por ejemplo podemos suponer que Filípides recorre un metro a cada zancada. Ahora el problema se reduce a la comparación de velocidades relativas: calcular en qué momento la última zancada de Filípides recorrerá una distancia mayor a la que haya podido recorrer la tortuga en el mismo tiempo, incluso aunque no sepamos definir la distancia exacta que la tortuga recorrería. Es decir, basta que una de las variables sea discreta y que podamos suponer que, en determinado tiempo, puede superar a las distancias infinitesimales, para demostrar, incluso teóricamente, que el movimiento existe.
El tema está en que la paradoja sólo se presenta considerando el espacio sin el tiempo, cuando sabemos que el movimiento es una función "continua" del espacio en función del tiempo.
lunes, 6 de abril de 2009
jueves, 2 de abril de 2009
11 ABRIL - MUSICA Y SINESTESIA
El próximo Sábado día 11 de Abril tendrá lugar en el Centro Párraga de Murcia el desarrollo del proyecto multidisciplinar Música y sinestesias. La ficha artística está integrada por el musicólogo Yvan Nommick, los pianistas Isabel Puente y Antonio Narejos, el artista plástico Ángel Haro y los compositores José María Sánchez-Verdú y Pedro Larrosa, todo ello coordinado por Francisco José Andreo, becado por el Centro Párraga para este trabajo de Investigación Artística que aborda desde distintos puntos de vista la música en su relación con la pintura y otras disciplinas.
Suscribirse a:
Entradas (Atom)